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Abstract—A central challenge in the early cognitive devel-
opment of humans is making sense of the rich multimodal
experiences originating from interactions with the physical world.
AIs that learn in an autonomous and open-ended fashion based
on multimodal sensory input face a similar challenge. To study
such development and learning in silico, we have created MIMo,
a multimodal infant model. MIMo’s body is modeled after an
18-month-old child and features binocular vision, a vestibular
system, proprioception, and touch perception through a full-body
virtual skin. MIMo is an open-source research platform based
on the MuJoCo physics engine for constructing computational
models of human cognitive development as well as studying open-
ended autonomous learning in AI. We describe the design and
interfaces of MIMo and provide examples illustrating its use.

Index Terms—cognitive development, developmental AI, infant
model, multimodal perception, physics simulation

I. INTRODUCTION

What does it mean to understand cognitive development?
While there are many possible answers to this question, a
good measure of our understanding of cognitive development
is our ability to rebuild it. Rebuilding cognitive development
means to construct a computational model of the developing
brain controlling the developing body. This entails learning
to interact with the environment in a way that matches that
of humans and explains the mental representations forming
during the process and the underlying brain mechanisms. The
idea of building computers that can learn more autonomously
like children has also been a major motivation of AI research,
that can be traced back all the way to Turing [1]. However such
“Developmental Robotics” or “Developmental AI” efforts have
become more common only in the last 20 years, for reviews
see [2]–[7].

Human cognitive development critically depends on the
embodied interaction with a physical environment, and this
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(a) Full body view (b) Facial expressions

Fig. 1. MIMo, the multimodal infant model.

may be just as important for human-like AIs with a common-
sense understanding of the physical world. Thus, recreating
the physical interaction with the environment is a central
aspect of rebuilding cognitive development. There are two
options for this. The first option is using humanoid robots
as is common in Developmental Robotics research. The main
advantage of this approach is its realism. However, working
with humanoid robots tends to be expensive, time-consuming,
and suffers from the brittleness of today’s humanoid hardware.
Importantly, all these factors impede the reproducibility of
research. Furthermore, the sensing abilities of today’s robots
are usually not comparable to that of humans. This is par-
ticularly problematic for the sense of touch. The human
body is covered by a flexible skin containing different kinds
of mechanoreceptors, thermoreceptors, and nociceptors (pain
receptors), which allow us to sense touch, pressure, vibration,



temperature, and pain. Reproducing such a human-like skin in
humanoid robots is still out of reach.

The second option is modeling the physical interaction
in silico. This requires physics simulators or game engines
that approximate the physics of such interactions. Many such
simulators are available today [8]–[10], for review see [11].
Disadvantages of this approach are inevitable approximations
leading to inaccuracies of such simulations and the high
computational costs, especially when non-rigid body parts
and objects are considered. However, this approach avoids
all the problems of working with humanoid robot hardware
mentioned above and ensures perfect reproducibility. Fur-
thermore, with powerful compute infrastructures simulations
can run faster than real-time, facilitating the simulation of
developmental processes unfolding over months and years.

To support such research, we have developed MIMo, a
Multi-Modal Infant Model (Fig. 1). MIMo is a research plat-
form for developing computational models of human cognitive
development and building developmental AIs. Its body is
modeled after an average 18-month-old child. MIMo has 38
degrees of freedom of the body, 6 degrees of freedom of the
eyes, and allows the animation of different facial expressions
(for studies on social development). MIMo’s interaction with
the physical environment is simulated using the MuJoCo
physics engine [12], which is particularly strong at simulating
contact physics including friction. In the design of MIMo we
have aimed for a balance between realism and computational
efficiency. To accelerate the simulation of physics and touch
sensation, MIMo’s body is composed of simple rigid shape
primitives such as a sphere for the head and capsules for most
other body parts. In this first release of MIMo, it is equipped
with four sensory modalities: binocular vision, proprioception,
full-body touch sensation, and a vestibular system. In the
following we describe the design of MIMo and illustrate how
it may be used in developmental science and AI research.
Concretely, we consider three scenarios where MIMo learns to
1) reach for an object, 2) stand up, 3) touch different locations
on his body.

The remainder of this article is organized as follows. In
Section II we briefly review related efforts to create platforms
for simulating cognitive development. In Section III we present
the physical design of MIMo and in Section IV we describe the
sensory modalities. Section V summarizes MIMo’s application
programming interface (API) and Section VI presents some
experiments to measure performance and illustrate potential
uses of MIMo. Finally, Section VII discusses our approach
and points out directions for future work. Our code is available
at https://github.com/trieschlab/MIMo.

II. RELATED WORK

We focus on two major classes of software platforms for
simulating cognitive development during embodied interac-
tions with the environment. The first kind is designed to
simulate a particular physical robot used in Developmental
Robotics research and intended to complement the work with
that physical robot. Examples are the iCub simulator [13]

and the simulator for the NICO robot [14] that has been
implemented using the V-Rep robotics simulation environment
[9]. Such platforms typically aim to faithfully reproduce the
design and behavior of the physical robot. Doing so helps to
reduce the notorious gap between simulation and real world.
However, such platforms also inherit any shortcomings of the
robot design relative to the human body and human sensing
capabilities. For example, if the robot possesses only poor
touch sensation, its simulated counterpart will suffer from the
same limitation.

The second kind of platform emulates human body and
sensing abilities directly and thus is not restricted by limi-
tations of current robotics technology in general or that of
specific robots in particular. An early example is the seminal
work by Kuniyoshi and Sangawa [15]. More frequently, simu-
lation models of specific aspects of sensorimotor development
have been proposed. These typically encompass only a small
subset of degrees of freedom and sensory modalities. An early
example is work on the development of grasping by Oztop and
colleagues [16]. A more recent example is the OpenEyeSim
simulator, which has been designed to support modeling the
development of active binocular vision [17] and is built using
the OpenSim software for simulating neuromusculoskeletal
systems [18]. While widely used in reinforcement learning for
locomotion tasks [19], standard humanoids introduced within
the MuJoCo [20] or Bullet [10] platforms only incorporate
very limited haptic modality and do not model a child-like
appearance.

III. PHYSICAL DESIGN

MIMo’s overall body dimensions and proportions were
adapted from anthropometric measurements of 16–19 month
old infants [21], treating the unit of distance in MuJoCo as
one meter. To keep computational costs down he is composed
of simple geometric primitives.

All joints are modeled as a series of one-axis hinges
and split into flexion/extension, abduction/adduction or inter-
nal/external rotation as appropriate for the joint. For the shoul-
ders we merged the commonly used abduction and flexion
axes, instead using horizontal flexion, abduction and internal
rotation. We found this necessary to keep the range of motion
realistic as MuJoCo does not allow for sufficiently complex
joint limits without modeling the actual muscle and bone
structure. Keeping abduction and flexion as two separate axes
would allow MIMo to “double-dip” on both axes depending
on the position of the other two.

Muscles are modeled as a combination of a motor and a
weak spring directly applying torque at the joint. The motor
acts as the voluntary muscle force while the spring will weakly
try to return the joint to its neutral position. Finally the
motion of each joint is weakly damped, loosely modeling
the decreasing force of muscles with increasing velocity.
This model is an intentional trade-off between accuracy and
complexity. We plan to provide an additional actuation model
using MuJoCo’s built-in muscle model in the future.

 https://github.com/trieschlab/MIMo


Since there does not appear to exist a single source provid-
ing a full set of range of motion or strength measurements for
our target age of about 18 months, we inferred data from a
large number of sources [22]–[33]. For range of motion we
took values from the youngest age reported in the various
studies and assumed no change. For muscle strengths we took
data from [22] as a baseline. These authors consider children
aged 3–9 and we used values from the lower end of this range
for all joints reported. Values for other joints were taken from
studies on adults or older children and then scaled down for
MIMo. We did this by assuming that the relative strengths of
joints stay constant, using the strengths of the knee or elbow
from [22] as reference values. Where required we converted
forces to torques using the appropriate lever arms from MIMo
based on the methodologies used in the respective source.

Table I shows the range of motion and strengths for all
joints. We treat extension, adduction and internal rotation
as positive and flexion, abduction and external rotation as
negative. Citations show the source of the data, while entries
without marked sources indicate best guesses based on the
other values.

By default, MIMo has a neutral facial expression. For
studies of social learning in multi-agent setups we created
six additional facial expressions. These correspond to the
six basic emotions proposed by [34] (enjoyment, sadness,
surprise, disgust, anger, and fear) and enable MIMo to convey
an internal emotional state. Expressions are implemented as
textures of the head sphere (see Fig. 1).

IV. MULTIMODAL SENSING

A. Binocular Vision

Vision is arguably the most informative and reliable sensory
modality for humans, yet it is the latest one to be developed.
Newborns have poor visual systems with low sensitivities to
depth, movement, and color. Concurrently with the develop-
ment of the visual neural pathway, infants learn to perform
coordinated movements with both eyes. Binocular vision is
typically fully functional at 5 months of age but continues to
improve throughout childhood (see [36] for a review).

MIMo is equipped with two cameras, situated on the
surfaces of the two independently-controlled eyeballs. Each
eye can rotate on three orthogonal axes resulting in horizontal
and vertical movements, often called pan and tilt, as well as
torsional movement. The range of motion is ±45° horizontally,
-47° to 33° vertically [37] and ±8° torsionally [38]. The
cameras render two RGB images with a 60º field of view,
equivalent to the central vision of humans [39]. Beyond this
range, visual acuity and color perception drop significantly.

B. Proprioception

Proprioception in mammals is driven by two main groups
of sensory organs [40]. Muscle spindles run in parallel to the
muscles and contain multiple types of nerve structures. These
measure the length and the rate of change of the length of the
muscle. The spindles for all the muscles acting on a given joint
thus effectively measure the position and velocity of the joint.

TABLE I
JOINT RANGE OF MOTION AND STRENGTH FOR MIMO.

Joint ROM [°] Voluntary Torque [Nm]
Neck flexion/ext. -70 [22] to 80 [22] -1.17 [26]∗ to 2.10 [26]∗

Neck lateral flex. -70 [27] to 70 [27] -1.17 to 1.17
Neck rotation -111 [27] to 111 [27] -1.17 to 1.17

Trunk flexion/ext. -61 [25] to 34 [25] -8.13 [25]∗ to 10.58 [25]∗

Trunk lateral flex. -41 [25] to 41 [25] -7.25 [25]∗ to 7.25 [25]∗

Trunk rotation -36 [25] to 36 [25] -3.63 [25]∗ to 3.63 [25]∗

Shoulder horizontal -118 [29] to 28 [29] -1.8 [31]∗ to 1.8 [31]∗

Shoulder flexion/ext. -183 [28] to 84 [28] -2.75 [30]∗ to 4 [30]∗

Shoulder rotation -99 [22] to 67 [22] -1.6 [30]∗ to 2.5 [30]∗

Elbow flexion/ext. -146 [22] to 5 [28] -3.6 [22] to 3.0 [22]

Wrist palmar/dorsi -92 [28] to 86 [28] -1.24 [35] to 0.7 [23]∗

Wrist ulnar/radial -53 [32] to 48 [32] -0.83 [35] to 0.95 [35]

Wrist rotation -90 [28] to 90 [28] -0.7 to 0.7
Mitt fingers flex/ext. -160 to 8 -0.69 [22] to 0.23

Hip flexion/ext. -133 [22] to 20 [24] -8 [23]∗ to 8∗ [23]∗

Hip ab-/adduction -51 [24] to 17 [24] -6.24 [23]∗ to 6.24 [22]

Hip rotation -32 [22] to 41 [22] -2.66 [22] to 3.54 [22]

Knee flexion/ext. -145 [22] to 4 [22] -6.5 [22] to 10 [22]

Ankle plantar/dorsi -63 [22] to 32 [22] -3.78 [22] to 1.89 [22]

Ankle e-/inversion -33 [33] to 31 [33] -1.06 [33]∗ to 1.16 [33]∗

Ankle rotation -20 to 30 -1.2 to 1.2
* Reported value scaled to be proportional to knee or elbow reference.

Golgi tendon organs are embedded at the connection points
between muscles and their tendons and measure the effective
load on the muscle. In addition to these main groups there are
mechanoreceptors in the joints. These support joint position
sensing but they respond strongest when a limb is reaching
the limit of its range of motion, effectively acting as limit
sensors.

MIMo does not simulate this diverse set of receptors
explicitly, but tries to capture the essence of the complex
proprioception system. Specifically, position and velocity is
measured for each joint degree of freedom. In addition, torque
sensors for each joint measure the applied torque, i.e., the sum
of applied motor torque, external torques and apparent torques
due to inertia. Finally there are limit sensors that activate when
a joint moves to within a certain threshold of its range of
motion limit, with the activation increasing linearly as the joint
approaches the limit.

C. Vestibular System

The vestibular system is composed of the semicircular
canals, the urticule, and the saccule, all located in the inner
ears of humans and other mammals. This sensory modality
provides information about the linear and rotational accelera-
tion of the head, in particular indicating the direction of gravity
to maintain balance. An impaired vestibular function during
infancy results in deficits or delays in motor development [41].

MIMo’s vestibular system consists of a single three-axis
accelerometer and a single three-axis gyroscope located at the



center of his head. This is a simpler setting than the bilateral
vestibular system of humans, without any considerable loss in
functionality.

D. Touch Perception

Human touch sensation is produced by a variety of receptors
responding towards specific aspects of touch, such as the
Slowly Adapting type 1 or SA1 type, which responds primarily
to direct pressure and coarse texture or the Rapidly Adapting or
RA type for slip and fine texture [42]. Due to the computation
overhead that comes from a full emulation of this process,
we simplify our model significantly. We ignore signal travel
times and condense the various types of receptors into a
single generic “touch” sensor type. This type can directly
provide normal and tangential friction forces at its location.
The sensors are spread over the whole body with variable
resolution according to the two-point discrimination distance
based on data by [43]. The simple nature of the geometries of
the different body parts is mirrored in the sensor distributions,
the sensor density varies across body parts, but not on the
same body part. Thus, for example, the front of the leg has
the same sensor density as the back.

When an object touches the skin, the associated forces,
provided by MuJoCo, are distributed to the nearby sensors ac-
cording to a simple surface response function only dependent
on the distance between the contact and the sensor. The sensor
density for each body part is configurable during initialization.

Significant limits are imposed by the contact simulation of
MuJoCo. All contacts are treated as point contacts between
rigid bodies. For example, a box sitting on a flat surface
will produce four contact points, one at each corner. Soft-
body physics can only be simulated as a connected mesh
of rigid particles, and is very expensive computationally,
which represents a significant hurdle for training reinforcement
learning systems. The surface response function can weakly
simulate soft-body sensing without actually performing soft-
body physics. A further limitation is that our touch sensors
currently do not measure contact slip. We plan to address this
in a future release.

V. APPLICATION PROGRAMMING INTERFACE

Our code is written in Python and built as an OpenAI
gym [44] environment to allow easy integration into existing
experimental setups and take advantage of the large amount
of documentation and third-party libraries that already exist,
such as the stable baselines library [45]. This environment is
intended as an abstract base class that will be subclassed and
adapted by other environments for specific experiments. These
subclasses would handle reward structure, sensor limits or any
additional constraints. Underdeveloped or limited sensors can
be implemented through their configurations, but for the most
part the user would implement any perceptual constraints. The
environment is set up to facilitate this in a straightforward
way. The configuration of the sensory modalities, such as
the density of the touch sensors or the field of view and
resolution of the visual system can be adjusted or disabled

(a) Binocular vision (b) Touch perception

Fig. 2. MIMo’s multimodal perception while holding a ball. (a) Anaglyph of
left and right eye views. (b) The ball touches the hand in two locations, leading
to activations of touch sensors (points) in the vicinity of the two contact points
proportional to contact force and distance from the contact point (arrows).
Note that the touch resolution was slightly lowered for readability.

easily during initialization without modifying the underlying
MuJoCo XMLs.

The action and observation spaces are generated automati-
cally based on the configuration of the MuJoCo XMLs and the
sensor modules. Disabling touch perception also removes the
associated entry from the observation space. All of the sensory
modalities are programmed as separate modules and can be
readily attached to any MuJoCo-based gym environment.

VI. EXPERIMENTS

A. Benchmarking MIMo

In a first set of experiments we benchmark the simulation
speed of MIMo. In particular, we are interested in assessing
under what conditions we can achieve faster than real-time
simulations.

We benchmark on a dummy environment, consisting of
MIMo and two objects. MIMo takes random actions contin-
uously. Each benchmark runs for 60 episodes, each lasting
6000 environment steps. The configuration of the MuJoCo
wrappers is such that there is a certain number of physics steps
for each environment step, with the duration of each physics
step determined in the model XML. Increasing the number of
physics steps thus reduces the number of environment steps
within a given time. For this benchmark each physics step lasts
5ms with two physics steps per environment step. The total
simulation time of each run is therefore 1 hour with 1-minute
episodes and 100 steps per simulation second. We measure
the real-time spent in each run, as well as in each of the
different components of the system: MuJoCo and the sensory
modalities. We test performance with multiple configurations
for the different sensory modalities, focusing on the vision
and touch modules since they are most sensitive to their
configuration and consume the bulk of the processing time.
The test system is equipped with an AMD FX-8350, 16GB
RAM and a GTX 1070. The execution times are measured
using Python’s cProfile library. The results can be seen in
Fig. 3.



The default configuration of MIMo (vision resolution of
256x256 pixels) performs significantly faster than real-time
at 1.36 simulation seconds for each real second. In addition
to adjusting the configuration of the modalities or increasing
the duration of each physics step, the performance of the
simulation could also be improved by increasing the number
of physics steps for each environment step, since that reduces
the amount of time spent in the sensory modalities.
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Fig. 3. Results of the performance benchmarks. Each bar represents one
run consisting of 60 episodes of 1-minute length each. The labels indicate
the pixel resolution for the visual system (V) and a scalar multiplier for the
sensor density for the touch system (T) used. The 4 leftmost bars correspond
to configurations with increasing touch sensor density and constant visual
resolution, the 3 rightmost bars to increasing visual resolution and constant
touch sensor density. All configurations with visual resolutions lower than
512x512 pixels run significantly faster than real-time (dashed horizontal line).

B. Illustrations of learning

In the following, we illustrate learning from multimodal
input using three examples: reaching for objects, standing up,
and self-body knowledge. For the sake of simplicity, MIMo is
trained with extrinsic rewards using two different state-of-the-
art deep reinforcement learning algorithms, Proximal Policy
Optimization (PPO) [46] and Soft Actor-Critic (SAC) [19],
with their default hyper-parameters from the Stable-Baselines3
library. Performance is compared for PPO and SAC with 10
different seeds (Fig. 4). We do not claim that such extrinsically
motivated learning is how human infants learn these skills. We
merely use these examples to showcase MIMo learning from
multimodal input.

a) Reaching for Objects: Reaching is a complex be-
havior that emerges in the first 6 months of age. Since it
requires hand-eye coordination, infants must combine vision,
proprioception, and touch to produce the desired motion [47].
They initially perform a visual search for an object of their
interest in order to determine the position of a desired target.
A motor command is generated for the arm and hand muscles
to produce the reaching movement, with immediate haptic
feedback about its success.

In our illustration, MIMo learns to reach for a ball. He is
standing in front of the target, which changes position ran-
domly in each episode, always within reach of MIMo’s right
hand. He can only move his right shoulder, elbow, and hand
joints. His head and eyes are set to look directly at the ball, i.e.,
the initial visual search and object fixation is assumed. The
observation space only includes the proprioception sensory
modality. MIMo can use the joint angles of his head and eyes
to determine the position of the target. The reward function

r =

{
100 if target reached,

−∥pfingers − ptarget∥ otherwise (1)

is the negative distance between the positions of the fingers
and the target, with a sparse positive reward when contact is
detected. Each episode lasts 1000 timesteps or until MIMo
successfully touches the ball.

b) Standing up: Infants learn to stand up by themselves
at around 10 months and start walking shortly after. This
is a gradual process that includes previous stages such as
crawling, maintaining balance, and gradually standing up with
the help of adults [48]. One particular stage is marked by the
emergence of pulling-to-stand, when infants who are unable
to stand without support grasp the edge of a solid surface
and pull themselves upwards, thus combining the strengths of
their arms and legs [49]. This behavior appears as early as 7
months of age and is a necessary milestone during independent
locomotion development.

To reproduce the pulling-to-stand behavior, we design an
environment where MIMo is placed sitting inside a crib. His
feet are fixed to the ground and his hands are fixed to the
crib’s rail guard, at a height of 45 cm. He can move the
joints in his arms, torso, and legs, with the aim of standing
up. The observation space includes the proprioception and
vestibular sensory modalities. The latter can be particularly
useful by providing information about vertical acceleration.
The extrinsic reward is given by

r = zhead − 0.01
∑

j∈joints

c2j (2)

where zhead is the head’s height measured from an initial height
of 20 cm, cj is the control force of joint j, and the sum is taken
over all active joints. This reward function favors standing
positions while penalizing states that require excessive force.
The parameters are set to balance the two components. All
episodes last 500 timesteps.

c) Self-body Knowledge: Infants learn not only about the
world but also about themselves and their own bodies. In fact,
this begins as a tactile exploratory behavior before birth and
continues over the first few months of life [50]. Infants develop
a self-body knowledge that allows them to map the multimodal
sensory inputs to the different parts of their bodies.

MIMo can learn this self-body knowledge by using his
touch perception. We design an environment where MIMo is
sitting with his legs crossed, such that his right arm can reach
all of his body parts. In each episode he is given a target
body part sampled uniformly at random from the geometric
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Fig. 4. Comparison of learning curves for PPO (red) and SAC (blue) in the three illustrative environments, with 10 different seeds each. Similar performance
is achieved for both algorithms in the reaching and body knowledge environments. In the standing up environment PPO outperforms SAC, likely because
the latter favors more stochastic exploration, causing MIMo to fall due to the instability of the standing straight posture. Snapshots show typical postures of
MIMo at the start (top) and end (bottom) of an episode. Videos are available at https://tinyurl.com/MIMo-playlist

primitives that make up his body. By only moving his right
arm, he is trained to activate the touch sensors on the target
body part. The observation space includes proprioception and
touch, as well as the target as a vector with one-hot encoding.
The reward function

r =

 500 if target touched,
−∥ptouched − ptarget∥ if other part touched,

−1 otherwise
(3)

is positive only if the target body part is touched. Otherwise, it
is either the negative distance to the target body part if another
touch signal is activated or a fixed negative value if there is no
touch signal. Each episode lasts 500 time steps or until MIMo
successfully touches the target.

VII. DISCUSSION

We have presented MIMo, a multimodal infant model.
MIMo is an open-source software platform for studying the
principles of cognitive development in humans and AIs. A
main strength of MIMo is the combination of state-of-the-
art physics simulation based on MuJoCo (https://mujoco.org)
with an efficient simulation of a full-body touch-sensitive skin.
We believe that these ingredients are essential for advancing
computational models of, e.g., the development of an infant’s
self-model or their object manipulation skills.

Overall, the design of MIMo reflects a number of trade-
offs between realism and computational efficiency. While these
permit faster than real-time simulations on standard hardware,
they have also resulted in a number of limitations. First,
while resembling the dimensions of an 18-month-old infant,
the body of MIMo had to be simplified to shape primitives
undergoing rigid body dynamics. Future versions could con-
sider more realistic body shapes and soft body dynamics. This
is particularly relevant for MIMo’s hands, which currently
have a simplistic morphology. Future work will add more
detailed multi-fingered hands. Second, actuation of joints is
so far limited to either position or torque control. Future
versions could consider joint actuation by more human-like
muscle tendon systems. Third, MIMo currently features simple
implementations of only four sensory modalities (binocular

vision, proprioception, touch, and a vestibular system). More
sophisticated versions of, e.g., MIMo’s touch perception could
be developed. Furthermore, future work could incorporate
nociception (pain perception), audition, or olfaction.

Despite these limitations, we hope that MIMo will facilitate
a transition towards models of development that can learn
large numbers of skills in an open-ended fashion based on rich
multimodal input. At the very least, it should make such efforts
easier and more reproducible. Furthermore, it will enable a
cumulative approach to such research, where models of the
development of higher-level cognitive functions are built on
top of previously published models of the development of
their precursor skills. After all, human development is often
a cumulative process, where new representations, skills, and
competences are built on top of existing ones.
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pattern recognition: A review,” Journal of Vision, vol. 11, no. 5, pp.
13–13, 12 2011.

[40] J. C. Tuthill and E. Azim, “Proprioception,” Current Biology, vol. 28,
no. 5, pp. R194–R203, 2018.

[41] S. Wiener-Vacher, D. Hamilton, and S. Wiener, “Vestibular activity and
cognitive development in children: perspectives,” Frontiers in Integrative
Neuroscience, vol. 7, 2013.

[42] K. O. Johnson and S. S. Hsiao, “Neural mechanisms of tactual form
and texture perception,” Annual Review of Neuroscience, vol. 15, no. 1,
pp. 227–250, 1992.

[43] F. Mancini, A. Bauleo, J. Cole, F. Lui, C. A. Porro, P. Haggard, and
G. D. Iannetti, “Whole-body mapping of spatial acuity for pain and
touch,” Annals of Neurology, vol. 75, no. 6, pp. 917–924, 2014.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint
arXiv:1606.01540, 2016.

[45] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8,
2021.

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[47] D. Corbetta, R. F. Wiener, S. L. Thurman, and E. G. McMahon, “The
embodied origins of infant reaching: Implications for the emergence of
eye-hand coordination,” Kinesiology Review, vol. 7, no. 1, pp. 10–17,
2018.
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