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Abstract
Context-dependent computation is a relevant characteristic of neural systems, endowing 
them with the capacity of adaptively modifying behavioral responses and flexibly discrimi-
nating between relevant and irrelevant information in a stimulus. This ability is particularly 
highlighted in solving conflicting tasks. A long-standing problem in computational neuro-
science, flexible routing of information, is also closely linked with the ability to perform 
context-dependent associations. Here we present an extension of a context-dependent asso-
ciative memory model to achieve context-dependent decision-making in the presence of 
conflicting and noisy multi-attribute stimuli. In these models, the input vectors are multi-
plied by context vectors via the Kronecker tensor product. To outfit the model with a noisy 
dynamic, we embedded the context-dependent associative memory in a leaky competing 
accumulator model, and, finally, we proved the power of the model in the reproduction of 
a behavioral experiment with monkeys in a context-dependent conflicting decision-making 
task. At the end, we discuss the neural feasibility of the tensor product and made the sug-
gestive observation that the capacities of tensor context models are surprisingly in align-
ment with the more recent experimental findings about functional flexibility at different 
levels of brain organization.

Keywords  Tensor representation · Context-dependent decision tasks · Filtering irrelevant 
information · Multi-attributes

1  Introduction

Context-dependent computation is a fundamental ability of our nervous system: a key 
stimulus is processed in different ways depending on other inputs that act as context. 
Obviously, considered in the abstract, the different simultaneous activations of large 
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neuronal groups located in different sectors of the brain can be seen as equivalent com-
ponents of a single composition of activity that defines the “state” of the system. But 
within a behavioral situation, whether in a natural setting or in an experimental task, the 
goal to be achieved by the individual constitutes the main stimulus, and the rest of the 
afferences, sensory, sensitive, emotional, etc. make up a “context” in which the subject 
is going to execute the action, make a decision, or interpret a percept.

This capacity of displaying adaptive behaviors was a fundamental evolutive acquisi-
tion of living species, drastically increasing their ability to survive. Already in inverte-
brates, different modes of circuit operation can be selected from the same circuit pattern 
generation by external influence [1]. Recently, state-dependent changes in functional 
connectivity have been found at different levels of brain organization, from circuit inter-
actions in shaping population encoding [2] to the level of large-scale networks across 
cortical areas [3].

The relevance of context-dependent decisions is particularly highlighted in conflict-
ing tasks, where the presence of misleading information is known to disrupt performance. 
The filtering of this misleading or irrelevant information is a permanent cognitive activity, 
closely related to attentional processes [4]. Sensory stimuli in ecological settings are usu-
ally multimodal. Nonetheless our brain can “gate in” visual information and filter out audi-
tory stimuli while reading a book in a noisy room. Furthermore, we often find ourselves 
in  situations where we receive stimuli from various sources of the same sensory modal-
ity. Besides being a remarkable capacity of the brain, the identification and separation of 
sources is an important technological challenge, which has been the subject of continuous 
advances in the field of signal engineering [5].

In experimental settings, this ability to filter out distracting information is particularly 
evident in perceptual decision tasks with noisy stimuli, such as the classical random dot 
kinetograms [6, 7]. In this common experimental paradigm used in many studies, subjects 
are presented with an animated cloud of apparently randomly moving dots, although a con-
trolled fraction of these move coherently. The task consists of indicating the net direction 
of motion, with humans usually having to press a button while monkeys perform saccades 
to a target. The addition of conflicting information, e.g., colored dots, leads to lower perfor-
mance in incongruent trials [8].

In this work, we propose a neurocomputational model for filtering irrelevant informa-
tion in conflicting tasks, based on context-dependent memory matrices [9, 10]. These are 
vector state models that use tensor product variable binding [11], which demonstrated rep-
resentational power and the possibility to develop theoretical neurocognitive approaches 
using the well-known capacities of linear algebra [12, 13]. These models share some of 
their key features, such as the tensor product variable binding and high-dimensional dis-
tributed vector representations with the paradigms of vector symbolic architectures and 
hyperdimensional computing [14–16].

Our main idea is to capture the representation of different sensory stimuli composed as 
a tensor product and then embed this core structure in the dynamical noisy scheme of a 
sequential sampling model. The model captures the main phenomenology of the random 
dot kinetogram context-dependent decision task in the experiment of Mante et al. [8]. It 
should be noted that our analysis has been a qualitative one. We merely showed that the 
model put forward is capable of explaining the behavior observed in monkeys for a certain 
set of parameters and neural codes. The aim of the model is to contribute to the ongoing 
modeling exploration over the multiple and important advances that have recently occurred 
in this area and in no way can be considered a definitive statement of how these cognitive 
processes arise from the neural substrate.
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The article is organized as follows. In the next section, we present context-dependent 
associative memory models. In Sect. 3, we generalize the model to make it capable of pro-
cessing inputs composed of multiple features and cue-dependent different tasks. In Sect. 4, 
we complete our model by embedding it in the frame of the classical leaky competing 
accumulator model, in order to endow it with a noisy dynamic, and then, in Sect. 5, we 
prove the potential of the model by reproducing the behavioral data from a cue-dependent 
task. We close with a discussion and declaration of envisioned future work.

2 � A review of context‑dependent associations in matrix memory 
models

Distributed vector coding and associative matrix memory models were born in the neuro-
sciences at the beginning of the seventies [17], inspired by the content-addressable nature 
of information storage in the brain and by the suggestive observations of Longuet-Higgins 
[18] and Dennis Gabor [19]. These systems provide a distributed mapping from high-
dimensional input vectors to high-dimensional output vectors. The vector representation 
relies on the fact that any kind of information in the brain is coded by the activity of large 
groups of neurons, as we now certainly know [20]. High-dimensional vectors are, there-
fore, natural mathematical variables to represent neural activity.

Cooper [21], deeply impressed by these models, turned to the field of theoretical neu-
robiology immediately after obtaining the Nobel Prize for his contributions in supercon-
ductivity and made decisive contributions to the field [21, 22]. These models, found in an 
independent way by Anderson [23] and Kohonen [24], were generated in a constructive 
way, parsimoniously incorporating neurobiological knowledge that is still in force. This is 
particularly revealed in [25].

A pattern of activation over a group of n neurons is represented by a vector x ∈ Rn. The 
number of neurons involved in a modality-specific cognitive unit should be considered 
large, even though activity may be sparse. Each neuron is represented in a fixed position of 
the inputs of a vector by a measure of its activity, usually its mean firing rate [26].

Assuming the simplest version of a Hebbian synapse, in the projection of a group of 
afferent axons F onto the dendritic trees of another group of neurons G, an associative 
matrix memory M is naturally given by the sum of the outer products of each pair of asso-
ciated input–output activity vectors:

where 
{
�i
}
 are the input vectors and 

{
�i
}
 the output vectors. The coefficients �i indicate the 

relative strength of each stored association. They represent the different frequency of pres-
entation of the pairs in the learning history. In the presence of a new input f, retrieval from 
the associative memory is performed by

where the inner products ⟨�i, �⟩ give a measure of similarity between the presented input 
and all previously stored inputs. Thus, if the presented input was stored in the memory and 
it is orthogonal to all other stored inputs, the associated output is perfectly recovered.

(1)� =

k∑
i=1

�i �i�
T
i

(2)�� =
�
i

�i �i⟨�i, �⟩
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Although the orthogonality of the vector patterns {fi} seems at first glance to be a 
very demanding condition, several circumstances normally present in nervous systems 
make it possible to ensure an approximate orthogonality of the vectors that encode dif-
ferent concepts. In fact, the high dimensionality of the vectors favors that the scalar prod-
ucts between pairs of them have values close to zero if the code is sparse, and the same 
happens for random codes under many symmetrical statistical distributions of their scalar 
components centered around zero [17, 27]. Also note that this quasi-orthogonality can 
emerge from a spatially patched activity distribution, like the one seen on topographic 
maps. A regionalized activity in a neural layer can be represented in vector form, where 
the different spatial zones are mapped in different blocks of the vectors, generating scalar 
products close to zero for vectors that encode the activation of different zones. For this 
reason, the existence of topographic maps can be seen, from a computational point of 
view, as a strategy of the nervous systems to orthogonalize its inputs.

Otherwise, some degree of overlap with other inputs may result in interference 
between outputs. This flawed retrieval may be undesired for artificial agents and digital 
computers, but it is a good model of the brain. Besides, the distributed nature of the 
information provides high reliability in the face of random losses of components both at 
the level of vectors and matrices [27]. These memories also present the ability to gener-
alize from the learning of examples, as it was early recognized [22].

But these classic memories suffer from a significant disability in being unable to 
solve the bifurcation problem, as Anderson called it [28]: the possibility of triggering 
different associative chains, given the same present state. That is, given the same input, 
an Anderson-Kohonen associative memory always responds with the same output. This 
limitation is not solved by lengthening the input vector with a sector that represents a 
context, since in this type of “additive contextualization,” the outputs are not separable 
due to the linear character of the operator. This is related to the impossibility of these 
early models to compute the XOR logical gate, a flaw that they share with one-layer per-
ceptrons, as Minsky and Papert famously pointed out [29].

To overcome this inability, two different lines of neural models were developed. The 
first of them is the famous multilayer perceptron trained with backpropagation [30], the 
ancestor of today’s multilayer networks that are revolutionizing artificial intelligence. 
Although computationally performant, this model lacks biological plausibility. There-
fore, although it is the model on which most applications of artificial neural networks 
were based by far, it is not an attractive model for the relatively small community of 
neurobiologically oriented model developers.

The other proposal is based on a preprocessing of the stimulus vector with another 
vector acting as a multiplicative context [9]. “Context-dependent associative memories” 
have two virtues for theoretical neurobiologists: they rely on feasible neurobiological 
mechanisms (we will discuss this topic later in Sect. 6), and because they rest on matrix 
algebra, they allow the development of mathematical theoretical approaches for com-
plex cognitive activities [31], whereas it is impossible to do algebra from the backprop-
agation model. Almost simultaneously and independently, Smolensky found the same 
solution [11], although he devoted his later developments to exploit an interpretation of 
the model as a filler-role binding, especially suitable for linguistic processing [32].

In context-dependent associative memory models, the main stimulus and the inputs 
acting as context are represented by vectors that are premultiplied by the Kronecker 
product. Representing the patterns of activity of neuronal context afferences with vec-
tors {p}, a context-dependent associative memory is given by the equation
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where for each input fi, different outputs gij are associated depending on the accompany-
ing context pj. The subscript j runs through the entire set of the possible contexts given the 
kind of inputs considered. A same context may be present with different inputs and when 
a given context pj never appeared with an input fi, the corresponding parameter ηij will be 
zero.

The symbol ⊗ means the Kronecker product, a particular case of the tensor product of two 
matrices of arbitrary dimensions [33]. For two matrices A and B, their Kronecker product is A 
⊗ B = [aij B]. The fundamental properties of this product are revised in Appendix 1.

Presenting to the memory a new input � in a context p yields.

It can be observed that the retrieved output of the memory is a linear combination of all the 
stored outputs. Each output vector gij in the memory is weighted by two scalar products: one 
compares the similarity of the input with all the stored inputs, and the other evaluates the simi-
larity of the present context with all the contexts stored in the memory. Orthogonal vectors 
cancel out the corresponding dot product, giving the double filter a conjunctive character. As 
before, if the inputs and contexts form quasi-orthogonal sets, this model can achieve perfect 
recall.

These non-linear vector state models enable the capture of complex cognitive functions 
such as the selective extraction of features from complex patterns [34], adaptive searching [12] 
or logical reasoning [35, 36]. The thematic packaging of information, an essential feature of 
context-dependent associative memories, shows a kinship between these models and the vec-
tor space models used to extract information from databases as it is the case with latent seman-
tics [12] and with search engines [10]. Other applications of this formalism include the organi-
zation of thematically ordered sequences in the production of language [37], the exploration 
of the cognitive processes involved in medical diagnosis [38], and the possibility of spatial 
organizations of memories in semantic topographies [39]. With the conjunction of the vector 
representation of cognitive states, the ability for pattern association based on simple Hebbian 
synapses, and the adaptive capabilities provided by tensor product preprocessing, these mod-
els are a strong candidate for developing a universal theory of cognition. Furthermore, their 
vector–matrix algebraic nature opens the possibility of developing a unified framework for 
theory advancement in cognitive neurosciences.

To apply the model to context-dependent decision tasks in which the system has to respond 
to stimuli with multiple attributes (eventually conflicting), we must generalize it, which we 
will do in the next section, and then it will be necessary to equip our model with a dynamic, to 
which we will dedicate ourselves in Sect. 4.

3 � Generalization to cue‑dependent decisions for stimuli with multiple 
attributes

In this section, we reformulate the model to make it capable of processing inputs composed 
of multiple features and cue-dependent different tasks, motivated by the behavioral data 
described in [8] that we are going to simulate in Sect. 5.

(3)� =
∑
i

∑
j

𝜂ij �ij(�j ⊗ � i)
T

(4)�(�⊗ � ) =
�
i,j

𝜂ij �ij(�
T
j
�)(�T

i
� ) =

�
i,j

𝜂ij �ij
�
�j, �

�⟨�i, �⟩
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In this particular case, we are faced with a situation in which there is no stimulus and its 
attributes, but the stimulus is the set of attributes. The concatenation of attributes in a single 
extended stimulus vector could be a naive first way of attacking the problem. However, it is 
well known that this additive composition of vectors prevents the separation of the outputs, 
since the coincident sectors of the input vectors generate non-zero scalar products when pro-
cessing the inputs. This situation could be overcome by the multiplicative composition of the 
inputs through the tensor product.

Our first step is to format context-dependent associative memories to model decisions in 
the presence of stimuli with multiple attributes. Let us consider an experiment where partici-
pants are shown stimuli with multiple features and instructed to perform specific responses 
depending on those features. Until now, we had presented associative memories in an abstract 
and general way, for which we had used the classical nomenclature, naming the input vectors 
with f and the output vectors with g. To mark that it is now a specific representation, carried 
out in some sectors in the nervous system, we change the nomenclature, and we will use s for 
stimuli and z for response vectors.

The n independent features or attributes of the stimulus are represented by vectors �1 , �2
,…., �n . Without loss of generality and for the sake of mathematical simplicity, we consider 
that all these features are represented by vectors of the same dimension m and also that the 
set of potential attributes and their arbitrary order is the same for all the stimuli of our experi-
mental situation. In neurobiology, the different attributes of a certain type of stimulus, such 
as those that arise from a fixed experimental setting, surely come from the cortical areas that 
are activated by different characteristics or modalities of the stimulus. So, we assume that the 
stimuli are well structured by that biological domain, and in this article, we do not deal with 
the mechanisms that could create those structured representations.

A stimulus (previously an input denoted by f) is now a structured object consisting of mul-
tiple attributes encoded in a single vector si of dimension (mn × 1) formed by the multiple Kro-
necker product of its attributes:

A memory that stores associations between stimuli si and their responses zi is given by

During an experimental trial, a multi-attribute stimulus (a) is presented to the subject. The 
corresponding vector �a = ⊗

k
�k
a
 encodes the neural activation produced by that stimulus 

across all attributes. The product of the associative memory M and the stimulus vector sa is 
given by

and from the properties of the Kronecker product (see Appendix 1), it can be seen that the 
product of the vectors is the scalar product of their pairwise inner products corresponding 
to the n attributes:

(5)�i = �1 ⊗ �2 ⊗⋯⊗ �n =
n

⊗
k=1

�k

(6)� =
∑
i

𝜂i�i�
T
i
=
∑
i

𝜂i�i(⊗
k
�k
i
)T

(7)��a =
∑
i

𝜂i�i(⊗
k
�k
i
)T (⊗

k
�k
a
)

(8)��a =
∑
i

�i�i

n∏
k=1

⟨
�k
i
,�k
a

⟩
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Hence, each attribute is compared individually to the corresponding attributes of the 
stored stimuli. In the absence of difference at the level of �i , the preponderant output �i 
in the resulting linear combination is that associated with a similar stimuli, calculated 
by means of an inner product.

Redefining �k
i,a

=
⟨
�k
i
,�k
a

⟩
 , the previous equation can be rewritten as:

which shows how attribute-level similarities are then multiplied to obtain the final weights 
(between brackets) in the system response. Thus, context-dependent associative memories 
can store and recall mappings from multi-attribute stimuli to the corresponding responses.

Now, as a second step, we expand this model to accomplish different tasks depending 
on given cues that we incorporate as multiplicative contexts in our memory. A stimulus 
vector �a accompanied by a cue context vector c can be expressed by a tensor composi-
tion as follows:

As we have discussed in the Introduction, the distinction between stimulus and con-
text is, in general, an arbitrary decision. As can be seen in Eq.  (10), the cue context 
vector c could be treated as a first entry within the set {sk}. Here we assume that the cue 
context is, for example, an order transmitted to the experimental subject by verbal or 
visual means and that the composition of the different stimuli is shaped by the wiring of 
the nervous system.

Thus, a generalized context-dependent memory matrix taking different cues into 
account can now be written. This global memory is given by

where the double sum spans over all stimuli and cues. The strengths of the associations �ij 
and the output vectors �ij depend on both the stimulus and the cue, because the same stimu-
lus can be associated with different responses under different contexts.

Assume that cue context vectors form an orthonormal set, such that ⟨�h, �h�⟩ = �hh� . 
Then, presenting a cue �� followed by the multi-attribute stimulus �a = ⊗

k
�k
a
 yields the 

output

which is a linear combination of the output vectors z instructed in memory. Here we 
assume that the nervous system ends up filtering the heaviest component in this output 
combination, which is expressed in Eq. (13). The process of highlighting this predomi-
nant component and attenuating the rest of the components could be implemented in the 
nervous system by some recursive mechanism, whose existence is presupposed, and we 
do not explore in this article. The selected response will be �∗� corresponding to

(9)��a =
∑
i

�i

[
�i

n∏
k=1

�k
i,a

]

(10)�⊗ �a = �⊗ [
n

⊗
k=1

�k
a
]

(11)� =
∑
i,j

𝜂ij�ij(�� ⊗ �i)
T =

∑
i,j

𝜂i,j�i,j(�
T
j
⊗ [⊗

k
�k
i
]T )

(12)�(�𝜈 ⊗ �a) =
∑
i,j

𝜂ij�ij(�
T
j
�𝜈)⊗ [(⊗

k
�k
i
)T (⊗

k
�k
a
)] =

∑
i

𝜂i𝜈�i𝜈

n∏
k=1

𝜎k
i,a

201



	 F. M. López, A. Pomi 

1 3

Two interesting conclusions can be drawn from this equation. The first is that the param-
eters η are of crucial importance, since the stronger associations will be favored and more 
easily selected. Second, the overall product of all features is used to make a choice, so that 
no single feature drives the decision-making process on its own. Note that, however, due to 
the multiplicative character of the scalar products, a mismatch in only one feature cancels 
the contribution of the corresponding output z in the linear combination of output.

The model, as it is so far, only produces responses in one step, single associations, no 
matter how complex and structured the memory or input is. For a real decision-making 
task, we must have a model that captures the dynamics of the process, in particular the pro-
gressive accumulation of evidence and, furthermore, that is capable of producing errors, 
having a somewhat stochastic behavior. That is our assignment for the next section.

4 � Embedding of the tensor model in a dynamic framework with noisy 
inputs

Psychologists often use response times and error rates in behavioral experiments as quanti-
tative measures of the degree to which irrelevant information is filtered. In order to repro-
duce those results with associative memories, one needs to consider a dynamic evolution 
for the response selection process. In this section, we show how a leaky, competing accu-
mulation of the matrix output can provide such dynamics.

The leaky competing accumulator model [40] (in what follows LCA) proposes that 
decision-making involves the accumulation of noisy information by an ensemble of accu-
mulators, one for each alternative in a decision-making situation. Each accumulator is 
thought to correspond to a large population of neurons (in parietal or prefrontal cortex 
[41, 42]), in competition with the neurons in other populations. At any time, the decision 
state of the system corresponds to the pattern of activation across the ensemble of accu-
mulators. The process continues until one of the accumulators reaches a threshold and the 
corresponding response becomes selected (Fig. 1). In the model, the state of each accu-
mulator is represented with a single activation value, and its time evolution is described 
by the differential equation:

The term μi represents a constant external input to the accumulator. The parameters α 
and β corresponds to the magnitude of leak and competition, respectively. When leakage 
is high, old accumulated evidence is “forgotten” quickly, so that newer evidence plays a 
higher role in the decision-making process. The competition term generates coupling 
between the equations of the different accumulators. �i represents zero-mean Gaussian 
noise. The term dt represents the time step, while τ is a characteristic time scale for integra-
tion. The accumulator is set to zero when its equation results in a negative value, making 
the model non-linear.

(13)𝜂∗𝜈

n∏
k=1

𝜎k
∗, a

> 𝜂i𝜈

n∏
k=1

𝜎k
i,a

∀ i ≠∗

(14)dxi =

(
�i − �xi − �

∑
j≠i

xj

)
dt

�
+ �i

√
dt

�
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In the simplest implementation of the LCA model, the accumulators are initially set 
to zero and evolve according to (14). In a task under standard conditions, the selected 
response corresponds to the accumulator that first reaches a threshold boundary (see 
Fig. 1). Alternatively, time-controlled tasks force subjects to make a decision when a cer-
tain time has elapsed, so that the highest accumulator is the one chosen. For a detailed 
analysis of the dynamics of LCA and the interplay between leak and competition, see [43].

Let us consider the simple case of two stimuli, a and b, such that when stimulus a 
is shown, the expected response corresponds to accumulator x1 and when stimulus b is 
shown, it corresponds to x2. Subjects may occasionally make mistakes, which is cap-
tured by the inclusion of step-by-step noise. Assuming that there are no further difficul-
ties involved in the task, the following conditions should be met: μ1 (a) > μ2 (a) and μ1 
(b) < μ2 (b). Usher and McClelland [40] suggest an extra constraint: that the total informa-
tion distributed over the accumulators should be kept constant for all stimuli. This is done 
by imposing μ1 + μ2 = 1. Note that the LCA model is indifferent to the representation of 
stimuli in possible previous layers and, due to its phenomenological nature, does not make 
assumptions about the representation of stimuli in the brain either. In the remainder of this 
section, we show how a vector representation of the neural variables and the use of linear 
associative memories allow the explicit inclusion of stimuli within the LCA model at the 
same time that it provides the desired noisy dynamics to our tensor contexts associative 
memory model.

Let us define the column vectors � =
[
x1 , x2

]T , d� =
[
dx1, dx2

]T , � =
[
�1, �2

]T , 
� =

[
�1, �2

]T . It can be readily seen that a system of two coupled differential equations as 
(14) can be rewritten as a vector–matrix equation:

where D is a bisymmetric square matrix with positive entries, which we will call the decay 

matrix, given by � =

[
� �

� �

]
 . Equation (15) holds for the general LCA model with m mul-

tiple accumulators, where vectors x, dx, μ, and ξ are m-dimensional and the decay matrix 
D has dimensions mxm with values α in the main diagonal and β elsewhere. The term (μ—
Dx) indicates the noise-free dynamics. Initially, with x = 0, accumulation is proportional to 
input μ. As x changes so does dx. Since D is bisymmetric, if α ≠ β, then its determinant is 
non-zero, and there is a unique equilibrium xeq such that μ = Dxeq which, if α > β, is an 
attractor point; otherwise it is a repeller. Alternatively, if α = β, the determinant is zero, and 

(15)d� =
[
� − ��

]dt
�

+ �

√
dt

�

Fig. 1   Overview of the leaky competing accumulator model (LCA). A Architecture of the LCA model con-
sisting of two input nodes and two accumulator nodes with leakage and lateral inhibition. B–C Examples of 
the time evolution of the accumulated evidence for correct and incorrect trials in the LCA model. Accumu-
lation finishes once one of the variables reaches the decision boundary
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there are either infinite equilibrium points if evidence for all accumulators is the same or 
there are no equilibrium points.

In what follows, we will consider that the input to the accumulators, μ, is the out-
put of an associative memory matrix M that accomplishes the recognition and the 
transformation of stimuli s into their associated readouts: μ = Ms. The representation s 
describes the neural activity associated with the encoding of the sensory input.

In general, while D remains a square matrix, M(mxm’) can be rectangular, since it 
stores a mapping from an m’-dimensional stimuli space to the m-dimensional accumula-
tors’ space, for m-dimensional choice (m’ ≥ m). For the moment, we will assume that M 
is given and fixed during an experiment.

The same way as each accumulator is considered to capture average firing rates of 
entire populations of parietal or prefrontal neurons, we suggest that stimuli vectors rep-
resent distributed firing rates of large groups of neurons from modality- and attribute-
specific brain regions [41]. It is reasonable then to assume that m’ can be as large as 
necessary, although, mathematically, a dimension m’ = m is sufficient for adequate 
discrimination.

Considering multi-attribute stimuli vectors s as those in (5) and equipped with a 
matrix memory like the one in (6), we have an extension of classical LCA which we call 
multi-attribute leaky competing accumulator (MLCA) model:

As before, the decay matrix D is a bisymmetric square matrix with leakage terms α 
in the main diagonal and lateral inhibition terms β elsewhere.

Hence, given a particular multi-attribute stimulus sa, Msa is given by Eqs. 7–9, and 
the dynamics of the accumulators will be governed by

On average, the accumulator that most frequently wins the race when stimulus a is 
presented is the one corresponding to zω such that the accumulator-level evidence is 
maximized. The index ω satisfies

which can be thought of as a recall function. When stimulus (a) is presented, the evidence 
for all accumulators is calculated based on the stimuli stored in the associative memory. 
The accumulator level evidence will be highest for the alternative that maximizes the entire 
product, even if other alternatives have higher attribute-level evidences for certain attrib-
utes. Importantly, the remaining alternatives play an important role in the dynamics of the 
MLCA model due to lateral inhibition and the stochastic nature of the accumulation.

The final step needed to complete our construction is to incorporate to the model 
the capability of focusing attention to different features of the stimuli, depending on a 
given cue. The stimulus accompanied by its context vector c can be expressed by a ten-
sor composition as follows: �⊗ �a (10). With a memory matrix like the one in (11), our 
final MLCA model governs the dynamics according to

(16)d� =

[
�

(
n

⊗
k=1

�k
)
− ��

]
dt

𝜏
+ �

√
dt

𝜏

(17)d� =

[∑
i

�i

(
�i

n∏
k=1

�k
i,a

)
− ��

]
dt

�
+ �

√
dt

�

(18)𝜂ω

n∏
k=1

𝜎k
𝜔a

> 𝜂i

n∏
k=1

𝜎k
ia

∀ i ≠ ω
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Now, we have developed the tool for studying the dynamics of context-dependent deci-
sions with conflicting attributes. In the next section, we apply our model to the discussion 
of an example from a two-alternative task with two-attribute stimuli. Given the experi-
mental data, we will see that the MLCA model not only allows for an understanding of the 
dynamics of evidence integration but also allows for the explicit study of the representation 
codes of stimuli.

5 � Reproducing the behavioral data from a cue‑dependent task

In this section, we test the capabilities of the model to reproduce the behavioral data of 
Mante et  al. [8], who tested two macaque monkeys on a color and motion random dot 
kinetogram.

The monkeys A and F were trained to fixate a screen and wait for a contextual cue that 
indicated the relevant attribute for each trial: a yellow square indicated that the monkeys 
were to respond based on the motion direction of the dots (right or left), whereas a blue 
cross indicated that responses should be based on their color (green or red) (see Fig. 2). 
The dots were presented for 750 ms; during that time, the monkeys integrated the noisy 
sensory inputs towards a choice. Following a delay of 300 to 1500 ms, the monkeys were 
to make a saccade in the direction of their chosen response. The experimenters varied 
the motion and color coherences in both contexts and studied the monkeys’ psychophysi-
cal performances by plotting psychometric curves. During the experiment, they recorded 
nearly 1500 units in the frontal eye field, a prefrontal area responsible for the selection and 
preparation of saccades [44].

Mante et  al. [8] suggest that stochastic models of selection and integration [41, 45] are 
unable to account for context-dependent behavior. Instead, the authors use a recurrent neural 

(19)d� =
[
�
(
�⊗ �a

)
− ��

]dt
𝜏

+ �

√
dt

𝜏

Fig. 2   Details of the behavioral task from Mante et al. [8]. Adapted by permission from Springer Nature: 
Mante, V. et  al. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 
78–84 (2013), Fig. 1. A Timeline. Monkeys were trained to fixate a contextual cue which indicated whether 
motion or color were to be attended. A random dot kinetogram with preset motion and color coherences 
was shown for 750 ms; after a random delay, the fixation point disappeared, and the monkeys performed 
a saccade to the selected target. B Stimuli. Motion coherences were set to 5, 15, and 50% moving in the 
defined direction, with the remaining dots moving randomly; color coherences were set to 6, 18, and 50% in 
the defined color, with the remaining dots colored randomly
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network which receives color and motion sensory evidence as inputs, as well as a binary con-
textual cue. The network outputs a single value, integrated over time, corresponding to its 
choice. This recurrent neural network qualitatively reproduces the population trajectories of 
the recorded units in the subspace of motion, color, and choice. Nonetheless, the model fails 
to reproduce the psychometric curves for the irrelevant attributes, especially for monkey F 
who consistently failed to ignore the irrelevant attribute (see Fig. 4). Next, we show how the 
MLCA model presented in this paper can correctly account for the psychophysical behavior 
without contradicting the single-unit recordings of [8]. Note that given the abstract nature of 
our model, the parameter values were set to fit the experimental data. It is not within the scope 
of this work to provide insights on the possible in vivo mechanisms by which these values are 
established.

Given a context-dependent associative memory M that stores the associations of the cue-
dependent relevant attributes with their corresponding responses, and a decay matrix D, the 
dynamics of the MLCA model is given by

where �cue ∈
{
�motion, �color

}
 is the contextual cue, either for motion or for color (the two 

possible relevant attributes in this task), while �motion ∈
{
�100% left,… , �100% right

}
 and 

�color ∈
{
�100% green,… , �100% red

}
 are the motion coherence and the color coherence of the 

stimuli, respectively. For example, a trial with 50% left motion coherence and 25% green 
color coherence where the monkey should attend to motion is encoded by the input vector 
(�motion ⊗ �50% left ⊗ �25% green) . That is, with a motion cue, left-moving dots should lead 
to a left saccade regardless of their color, whereas with a color cue, green dots should lead 
to a left saccade regardless of their motion. Furthermore, given the asymmetry of these 
associations, left and green dots in both contexts should have stronger leftward evidence 
accumulation than left and red in the motion context or right and green in the color context.

Please note that although the dimensionality of neural groups is always high, for com-
putational convenience, we use a low dimensional vector representation. This is acceptable 
because in this task, the important thing is the recognition of the patterns involved, which is 
mediated by the angle between the vectors and is not influenced by their dimensions or the 
code used.

Each of the motion and color vectors is expected to encode a scalar coherence, and similar 
coherences must have similar vector representations with high inner products. The encodings 
will therefore follow a one-dimensional path between the representations for the two extreme 
coherences. This allows for a simplification by assuming that the matrix memory only stores 
the associations for the extreme coherences (i.e., the corners in Fig. 2B) with the correspond-
ing responses. Defining rleft and rright as the response codes to the left and to the right, respec-
tively, and η > η’ as the scaling rates for the main diagonal (i.e., left-green and right-red) and 
anti-diagonal (i.e., left-red and right-green) stimuli, respectively, a possible context-dependent 
associative memory for the experiment of Mante et al. [8] would be

(20)d� =
[
�(�cue ⊗ �motion ⊗ �color) − ��

]dt
𝜏

+ �

√
dt

𝜏

(21)

� = 𝜂
(
�left�

T
motion

+ �left�
T
color

)
⊗ �T

left
⊗ �T

green
+

𝜂�
(
�left�

T
motion

+ �right�
T
color

)
⊗ �T

left
⊗ �T

red
+

𝜂�
(
�right�

T
motion

+ �left�
T
color

)
⊗ �T

right
⊗ �T

green
+

𝜂
(
�right�

T
motion

+ �right�
T
color

)
⊗ �T

right
⊗ �T

red
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where each line in (21) corresponds to one of the corners in Fig.  2B. It is assumed  
that the matrix memory stores abstractions of the stimuli the monkeys are exposed to  
during training. For example, the monkeys are trained to perform a rightward saccade  
upon seeing a majority of red dots in a color context, regardless of exactly how many  
red dots there are and how they are moving. This is a long process. For our model, we  
are not concerned with the establishment of this memory but rather with the fact that  
during the testing phase of the experiment, the monkeys have already learned these 
associations.

We consider 11 motion coherences and 11 color coherences and perform 1000 simula-
tions for each combination with both possible cues. The parameters from the model are 
heuristically optimized such that the behavior of the model reproduces the behavior of 
the monkeys. When fitting the parameters, we consider a single set of parameters for both 
monkey across all experimental conditions, with the exception of the cue vectors that are 
orthogonal for monkey A but not for monkey F, thus capturing the latter’s worse perfor-
mance. The source code for the simulations is available under an MIT license at https://​
github.​com/​franm​lopez/​mlca. More details about the simulation parameters are provided 
in Appendix 2.

Let us call γ the inner product of the stored and the presented stimuli motion vectors and ν 
the inner product of the stored and the presented stimuli color vectors. Upon seeing a stimulus 
(p, q) in the motion context, the output of the memory is given by

The bracketed terms are the readouts and therefore set the evidence in favor of the left 
and right responses, respectively. It can be immediately seen that if the p motion coherence 
is towards the left, then 𝛾left > 𝛾right , and the left motion will be selected more frequently 
(see Fig. 3). Interestingly, the asymmetry imposed by setting 𝜂 > 𝜂′ means that green color 
coherences in the motion context have higher evidence to the leftwards accumulator than 
red color coherences, as seen in the monkeys’ behavioral data but not in the simulations of 
Mante et al. [8].

Figure 4 shows the psychometric curves obtained from the experimental data of mon-
keys A and F, as well as the MLCA simulations. Our model is capable of reproducing 
the behavioral results, particularly the influence of the irrelevant attributes. Changing 
the color and motion coherence levels affects performance in both color and motion con-
texts. According to Mante et  al. monkey F was consistently worse than monkey A, as 
revealed by the slope of the psychometric curves when changing the irrelevant attribute. 
We reproduce this difference by using two different associative memories, with monkey 
F’s stored vectors being less orthogonal but all other parameters set as equal. Thus, in 
our model, both monkeys receive the same input information, but monkey A is able to 
filter out the irrelevant attribute better at the level of the context-dependent associative 
memory.

These results show that explicit stimuli representations and their readouts by means of 
context-dependent associative memories are relevant mechanisms to take into account when 
modeling perceptual decision-making.

(22)
�(�motion ⊗ �⊗ �) = �left

[
𝜂 𝛾left 𝜈green + 𝜂�𝛾left 𝜈red

]
+

�right
[
𝜂 𝛾right 𝜈red + 𝜂�𝛾right 𝜈green

]
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6 � Discussion and future work

In this article, we have presented an extension of a vector state model that uses tensor prod-
uct variable binding, context-dependent associative memories, to contribute a new tool to 
the modeling of context-dependent neurocomputations. This model has the advantage of 
accomplishing adaptive associations without losing on the way the matrix operators of lin-
ear algebra. Here, we modified the model to make it capable of performing dynamical deci-
sions with noisy and progressive accumulation of evidence in cue-dependent tasks, where 
the stimuli have multiple and conflicting attributes and proved its potentialities reproducing 
the data and qualitative behavior in the experiment of [8].

In what follows, we will make some considerations about the neural feasibility of the 
tensor product. One of the requirements of the tensor model is the combinatorics of the dif-
ferent components of the Kronecker product. The high dimensionality and the distributed 
nature of the memory traces in associative memories assure the preservation of function 
in the event of damage or absence of both neurons and synapses. This early-known char-
acteristic is greatly accentuated in the case of memories in which the inputs were previ-
ously processed by the Kronecker or tensor product [27]. No more than a small statistical 
sample of the components of the tensor product is needed for the model to function prop-
erly [46]. Note that this feature is shared by all hyperdimensional computing models and 
vector symbolic architectures with distributed coding (for an extension of this point with 
abundant bibliographic references, it can be consulted [47]). This sample of the potential 

Fig. 3   Response histograms for simulations using the MLCA model. A Motion context; B color context. 
Each histogram corresponds to a specific motion coherence (horizontal axis) and color coherence (vertical 
axis), with bar heights indicating the percentage of correct responses. One thousand simulations were per-
formed for each motion and color coherence in each context. Due to the stochastic integration, the same stim-
ulus can entail any of the two possible responses. These results show a high dependency on the task-relevant 
attribute and a low dependency on the task-irrelevant attribute. However, the task-irrelevant attribute has a 
considerable effect on task-relevant neutral coherences (i.e., central column in A, central row in B). Mante 
et al. [8] do not use entirely neutral stimuli in their experiment
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combinatorics of the meeting of two neural afferences can be carried out on the dendritic 
tree of a neuronal group that carries memory. In addition, it is important to note that the 
processing of multiple Kronecker products, as those that were presented in the more gen-
eral equations of the model (5–7), are just an abstract mathematical representation of an 
operation that can be carried out successively, by means of a neural recursion.

The other type of neural requirement is the kind of interaction between the afferent axons 
on a dendrite, which in the model is represented by a multiplication. Recent work has provided 
evidence for cortical functional flexibility at multiple scales [48], the type of operations that 
context-dependent memory models enable. The evidence points to inhibitory neurons underly-
ing online functional sculpting of cortical circuits. At the level of an individual neuron, evi-
dence has been found of specific subtypes of dendrite-targeting inhibitory neurons that con-
trol individual modality pathways converging onto a neuron. Wang et al. [49] found that this 

Fig. 4   Psychometric functions for monkeys A and F in [8] and for the MLCA model. Left panels (Monkey 
A and Monkey F) were adapted by permission from Springer Nature: Mante, V. et al. Context-dependent 
computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013). For each, psychometric 
curves are obtained in the motion (top) and color (bottom) contexts as functions of motion (left) and color 
(right) coherences. Monkey A is globally better than monkey F in discriminating the task-relevant from the 
task-irrelevant attribute; the MLCA model is capable of capturing this difference by means of stimuli repre-
sentation vectors that can be more linearly independent (monkey A) or less (monkey F). Our model shows a 
psychometric dependence on the task-irrelevant attribute qualitatively equivalent to that of the monkeys, an 
effect not shown by the recurrent neural network model of Mante et al.
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pathway-specific gating can be performed by inhibitory neurons when inputs from different 
pathways cluster on a pyramidal neuron dendrite. Their results suggest that context targets 
specific classes of inhibitory neurons. Notice that, mathematically, an inhibition or a func-
tional shutdown can be modeled by a multiplication by zero.

This context-dependent gating-on mechanisms can also be found at the large scale of 
cortico-cortical networks, probably mediated by heterogeneous patterns of cholinergic sign-
aling across the cortex [50]. Evidence points also to a key role of GABAergic interneuron 
populations in mediating mode-switching in cortical networks [49]. This type of scaffolding 
of connectivity across cortex areas can be modeled by input–output context-dependent tensor 
memories [39].

Hence, tensor-contexts matrix memories seem to be modeling exactly what the most 
recent experimental findings are revealing about functional flexibility at different levels of 
organization. Interestingly, tensor product nets became recently part of the computational 
weapons of deep learning models (see, for example, [51] and [52]). Eventually this could 
become another example of natural and cultural convergent evolution of computational 
solutions.

Finally, we want to point out that the natural continuation of this work is the represen-
tation of other situations where the information received contains elements that interfere 
with the correct answer for the proposed task. In particular, we are currently working on 
situations where the stimulus location interferes with the spatial, lateralized representation 
of the response, as it happens in the Simon and SNARC effects. In a series of experiments 
from the late 1960s, Simon and colleagues study a stimulus–response compatibility effect 
where subjects have to press one of two lateralized buttons in response to a visual or audi-
tory stimulus, such as a color or a tone [53]. The stimulus is also lateralized. The Simon 
effect consists of larger response times and error rates when the stimulus and response are 
on opposite sides. The SNARC effect [54] consists of faster left-side responses to small 
numbers and faster right-side responses to large numbers, suggesting a spatial organization 
of magnitude information.

Appendix 1 Kronecker product

The Kronecker product, ⊗ (see [32]), is a particular case of the tensor product of two matrices 

of arbitrary dimensions, where A⊗ B =

⎡⎢⎢⎣

a11B ⋯ a1nB

⋮ ⋱ ⋮

am1B ⋯ amnB

⎤
⎥⎥⎦
  

The following are some of its basic properties:

(a) 𝜆(A⊗ B) = A⊗ (𝜆B)

(b) A⊗ B + A⊗ C = A⊗ (B + C)

(c) (A⊗ B)(C⊗ D) = (AC)⊗ (BD)

(d) (A⊗ B)T = (AT ⊗ B
T )

Of importance for context-dependent memory models, if a, b, c, and d are k-dimensional 
column vectors, using properties (c) and (d), the following equations hold:

(�⊗ �)T (�⊗ �) =
�
�T ⊗ �

��
�T ⊗ �

�
= ⟨�, �⟩⟨�, �⟩
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Appendix 2 Simulation parameters

The MLCA parameters used to simulate the monkeys’ decisions during the experiment 
performed by Mante et al. [8], as described in Sect. 5, are the following:

leakage ( � = 0.1 ); lateral inhibition ( � = 0.1 ); integration step ( dt = 0.1 ); time normali-
zation ( � = 1 ); Gaussian noise variance ( �2 = 0.25 ); threshold boundary (b = 10).

The numerical simulations are performed with the context-dependent associative mem-
ory M defined in (21). The response and cue vectors are defined as orthogonal, while the 
motion and color vectors and the learning rates are fitted to the data; all vectors are normal-
ized. The context-dependent associative memory for monkey A of [8] is defined by the 
vectors:

�left = [1, 0]T ; �right = [0, 1]T ; �motion = [1, 0]T ; �color = [0, 1]T;
�left = [0.9428, 0.3333]T ; �right = [0.3333, 0.9428]T;
�green = [0.9129, 0.4082]T ; �red = [0.4082, 0.9129]T;

and the context-dependent associative memory for monkey F is defined by the same vec-
tors except for the context cues, which include a small overlap to capture this monkey’s 
worse results:

The numerical simulations following the dynamics of (20) are performed with the same 
context cues used for the memories, while the stimuli are varied analogously to Fig. 2B 
across 11 coherence levels:
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